13 СИСТЕМЫ ЦИФРОВОГО УПРАВЛЕНИЯ ОБЪЕКТАМИ

13.1 Классификация систем программного управления

Системы программного управления (СУ) нашли широкое применение в системах управления металлорежущими станками (МРС). Она представляет собой совокупность элементов, узлов и агрегатов, реализующих заданный алгоритм станка и обеспечивающий достижение заданной цели (получение деталей заданных размеров с требуемой точностью и качеством поверхности за строго определенное время). Целесообразно СУ станков классифицировать по информационным признакам:

- 1 по типу циркулирующей в СУ информации;
- 2 по способу ее переработки и хранения.

В системе управления существует два потока информации:

- 1 прямой поток информации его источником является программа управления (программа обработки поверхностей);
- 2 обратный поток информации (информация о результатах управления). Его источником является, собственно, технологический процесс.

Составными элементами любой СУ МРС, реализующей цикл программного управления, является:

- материальные носители программы управления;
- устройство ввода программы;
- устройство считывания;
- устройство преобразования информации программы в команды управления.

В СУ в качестве программоносителя используются: кулачки, штекерные табло и барабаны, копиры, шаблоны, перфоленты, магнитные ленты, специальные кассеты памяти, карты памяти.

Устройства ввода информации — обеспечивают заданный режим подачи программоносителя на элементы считывающего устройства. В качестве такого устройства может быть рассмотрен: привод рабочего движения, привод вспомогательных перемещений кулачков и шаблонов, лентопротяжные механизмы, интерфейсы связи с кассетами внешней памяти, кард-ридеры.

Устройства считывания — определяются характером программоносителя и типом устройства ввода, обеспечивает преобразование информации, записанной на программоносителе, в какой-либо электрический сигнал. К данному устройству можно отнести: щупы со следящими золотниками или конечными выключателями, копирные пальцы, фотосчитывающие устройства, магнитные головки.

Устройства преобразования информации — обеспечивают формирование команд на исполнительный орган станка в соответствии с сигналами, поступающими с устройства считывания. Они задают требуемый закон управления исполнительным органам станка. В качестве таких устройств используются: усилители, элементы логики, электронные блоки, реализующие требуемый алгоритм управления (аналоговые блоки реализующие закон управления).

В зависимости от степени централизации функций управления все системы управления можно разделить на: централизованные; децентрализованные; и комбинированные.

В централизованных СУ управление работой всех исполнительных органов осуществляется от единого командоаппарата (программный механизм). Существует два режима работы командоаппарата:

- 1-с непрерывным вводом программы (режим работы исполнительного органа определяется интервалом времени заданным профилем соответствующего кулачка);
- 2 с дискретным характером движения программоносителя (программный механизм останавливается в момент выдачи текущего набора команд и приводится в движение после прихода команды о выполнении хотя бы одной из выставленных команд).

В децентрализованных системах управление осуществляется от отдельных независимых регуляторов. К недостаткам централизованных систем относятся:

прекращение выполнения всего комплекса задач возложенных на СУ
при выходе из строя хотя бы одного элемента системы.

Децентрализованные системы сохраняют работоспособность с ограниченным набором функций даже при выходе из строя нескольких исполнительных органов. СУ в зависимости от типа программоносителя и характера представления на нем информации делятся на:

- командные;
- путевые;
- цикловые;
- копировальные;
- числового программного управления (ЧПУ).

13.2 Классификация систем ЧПУ

Основным признаком, позволяющим произвести классификацию систем ЧПУ (СЧПУ) является признак, отражающий характер движения рабочего органа (РО) в процессе обработки. Этот признак определяется алгоритмом функционирования. Различают:

- 1. Алгоритм позиционного управления. При реализации данного алгоритма осуществляется перемещение РО в точку пространства, с координатами, заданными программным способом. Процесс перемещения РО производится без обработки. Выполнение операции осуществляется только после выполнения цикла позиционирования. Данный алгоритм используется в станках сверлильной и расточной группы, а также промышленных роботах.
- 2. Алгоритм контурного управления. Существуют три разновидности данного алгоритма:
 - а) контурное управление в прямоугольных координатах. В этом случае

перемещение РО в каждый момент времени возможно только по одной координате, т.е. РО перемещается в заданную точку пространства с выполнением конкретной технологической операции. В этом случае программируется координата конечной точки, перемещения и величина подачи на данном участке траектории. При расчете технологических параметров обязательно учитываем эквидистанты.

- б) контурное объемное управление. При реализации данного алгоритма осуществляется одновременное согласованное перемещение по двум, трем и более координатам. В этом случае программируется координата конечной точки участка траектории, тип участка траектории (отрезок прямой или окружности), параметры этого участка, подача на данном участке.
- в) синхронное (синфазное) управление. Обеспечивает задание и поддержание в течение всей работы требуемого соответствия скорости по отдельным координатам. Применяется на зубообрабатывающих станках.
- 3. Алгоритм циклового управления. Обеспечивает перемещение РО поочередно по каждой координате, но в этом случае программированию подвергаются: характеристики цикла перемещения (направление, скорость и адрес данных), а величина перемещения, т.е. данные задаются с помощью упоров, кулачков и потенциометрических датчиков.

Сложность алгоритма управления, реализуемого системой ЧПУ, определяется ее элементной базой. В первых СЧПУ, реализованных на элементах с малой степенью интеграции, алгоритмы управления задавались схематично, с помощью аппаратных средств. СЧПУ отличались низкой гибкостью, и были специализированы для конкретного станка.

Появление микропроцессоров, микроЭВМ, привело к увеличению функциональной избыточности систем управления, увеличение их вычислительной мощности. Это привело к расширению класса многоцелевых станков и обрабатывающих центров, к появлению робототехнических комплексов (РКТ), гибких производственных систем (ГПС). Расширение функциональных возможностей СЧПУ привело к увеличению их гибкости и легкой адаптации раз-

личных классов технологического оборудования. При возникновении такого класса оборудования, одним из сдерживающих факторов их широкого применения, стали выступать задачи подготовки производства в части подготовки управляющих программ.

Переход на международную систему стандартов кодирования информации позволило:

- 1) унифицировать и автоматизировать ввод управляющих программ;
- 2) повысить надежность программного продукта;
- 3) создать автоматизированную систему подготовки управляющих программ.

Это позволило снять ограничения на применение станков с ЧПУ и сократить сроки подготовки производства для них. В зависимости от принципов организации, СЧПУ делятся на следующие типы:

- HNC система ЧПУ, в которую вводят программы обработки, осуществляемые с пульта оператора с помощью мнемонических функций.
- NC система построена на специальных вычислительных блоках, выполняющих строго определенную функцию. В них цифровая модель функции управления задана схематично, т.е. с помощью аппаратных средств. Протяженность алгоритма управления определяется аппаратной мощностью системы. Недостатком является невозможность изменения функций управления без нарушения аппаратной целостности.
- CNC система ЧПУ построена на основе стандартных вычислительных устройств (мини ЭВМ, ОЗУ, ПЗУ и т.д.) обладающие "мягкой" логикой, функциональные возможности в большей степени определяются программными средствами, чем аппаратными. Система обладает большим запасом вычислительной мощности. Однако использование таких систем в станках с подачей >15-30 м/мин и с требуемой точностью отсчета перемещения порядка 1 мкм практически не возможна, в виду невозможности решения задач управления в этих условиях системы реального времени.
 - DNC это смешанная система, в которой структура соответствует си-

стеме CNC, а блоки, реализующие определенные функции, построены по системе NC, т.е. часть функций управления решается аппаратным, а часть функций управления решается программными средствами.

– MRST эта система построена из большого числа одинаковых вычислителей, выполненных на микропроцессорах – комплектах или микроЭВМ. Они представляют жесткую структуру типа NC, с реализацией отдельных блоков или локальных регуляторов типа CNC.

13.3 Обобщенная структурная схема микропроцессорной системы ЧПУ для MPC

Обобщенная структурная схема микропроцессорной системы ЧПУ для MPC представлена на рисунке 13.1.

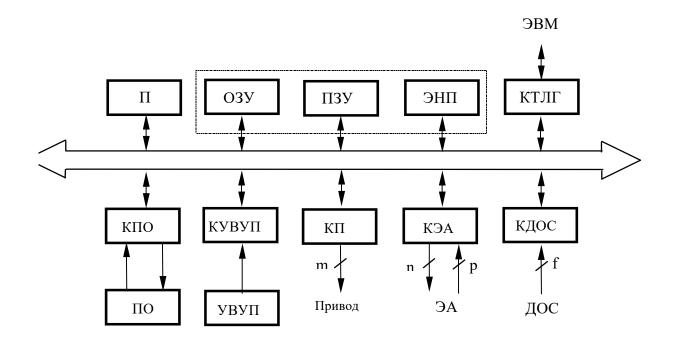


Рисунок 13.1 – Обобщенная структурная схема микропроцессорной системы ЧПУ

 Π – процессор предназначен для синхронизации всех процессов и определение и определение способов взаимодействия между функциональными

программами, аппаратными и программными средствами.

ОЗУ — оперативно запоминающее устройство, предназначено для хранения промежуточных результатов вычислений при решении задач интерполяции, управление приводом электроавтоматики.

ПЗУ – постоянно запоминающее устройство, предназначено для хранения системного программного обеспечения и стандартных типовых циклов технологического программного обеспечения.

ЭНП – энергонезависимая память станка, приводов, и для хранения архива управляющих программ.

КТПГ – контроллер телеграфного канала предназначен для связи с ЭВМ верхнего уровня, используется в СЧПУ иерархических системах ГПС.

КПОиПО – пульт оператора и его контроллер предназначены для обмена информацией с оператором и ручного ввода управляющих программ.

КУВУП и УВУП – устройство ввода управляющих программ и его контроллер предназначены для ввода управляющих программ с какого-либо физического носителя.

 $K\Pi$ — контроллер привода предназначен для хранения цифровой команды, задания скорости и преобразования ее в аналоговый сигнал со стандартным значением $\pm 10 \mathrm{B}$ или цифровой сигнал.

КЭА – контроллер электроавтоматики предназначен для выдачи релейных команд управления исполнительными органами станка, работающими в старт-стопном режиме, а также для сбора информации о нормальном функционировании объекта управления аварийных ситуаций, контроля управления релейных команд управления.

КДОС – контроллер датчиков обратной связи предназначен для первичной обработки сигналов с датчиков, хранения некоторой величины приращения координат и выдачи этой величины по требованию процессора.

Готовность станка — один из важнейших сигналов, характеризующих возможность выполнения в полном объеме всех возложенных на технологический объект функций. Он отражает готовность всех исполнительных органов

станка и выполнению возможных на них функций при подачи команд управления. В комплектных приводах для информации о его рабочем состоянии выведены сигналы готовность привода и авария. При использовании других устройств, как правило, приходится самостоятельно формировать аналогичные сигналы. Например: при использовании пневмоприводов в цепь готовности станка необходимо обязательно включить датчик давления в пневмосети. При использовании гидропривода в цепь готовности станка включить следующий сигнал: сигнал подачи напряжения на привод гидронасоса, информация с датчиков давления в нагнетающую магистраль, информация с контактов датчиков уровня масла в баке гидростанции. Как правило, в цепь готовности станка устанавливаются контакты датчиков уровня СОЖ в баке для ее хранения. В цепь готовности станка иногда включают также контакты, характеризующие различные аварийные ситуации.

13.4 Контрольные вопросы

- 1. Что может использоваться в системе управления в качестве программоносителя?
- 2. Какие могут быть системы управления в зависимости от степени централизации функций?
 - 3. Какие могут быть алгоритмы функционирования у систем ЧПУ?
- 4. Что позволил получить переход на международную систему стандартов кодирования информации в управляющих программах?
- 5. На какие типы делятся СЧПУ в зависимости от принципов организации?
- 6. Из каких элементов состоит обобщенная структурная схема микропроцессорной системы ЧПУ для MPC?